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Cryptography
Complexity Theoretical Approach

plaintext m ciphertext cencryption

adversary:
• Is there plaintext information left in

the ciphertext?

• I have unlimited computational
power!

Information Theoretic Approach

S.Neukamm () JASS ’05 3 / 48



Cryptography
Complexity Theoretical Approach

plaintext m ciphertext cencryption

adversary:
• Can I efficiently extract plaintext in-

formation?

• I only have limited computational
ressources!

Complexity Theoretic Approach
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One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)
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One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)

Definition
A function f is called one-way, if f is easy to compute but hard to invert.

S.Neukamm () JASS ’05 4 / 48



One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.
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Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output
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Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

’length’ or ’size’ of x

|x|

TIME
[steps ]

running time (x, A)

start halt

Input

Algorithm

Output

worst case running time (n) ≥ running time (x, A) ∀x : |x| ≤ n
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Complexity Theory - Basic Definitions
Polynomial Time Algorithm

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output

PT

worst case running time (n) ≤ poly(n) ∀n

n
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Complexity Theory - Basic Definitions
Polynomial Time Algorithm

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output

PT

worst case running time (n) ≤ poly(n) ∀n

n

Otherwise: Exponential time algorithm
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Complexity Theory - Basic Definitions
Polynomial Time vs. Exponential Time.

growing of poly., sub-exp., exp. functions

f (x) n2 n3 exp(
√

n ln n) 2n

x
10 102 103 1.2 · 102 103

50 2.5 · 103 1.2 · 105 106 1015

100 104 106 2 · 109 1030

Notes
polynomial time algorithm⇔ efficient

exponential time algorithm⇔ inefficient
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Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L
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L

x

x

A(x) = χL(x)

polynomial time⇒
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Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

A(x) = 1

polynomial time⇒

L ∈ NP

wx witness
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Complexity Theory - Basic Definitions
Complexity Class.

Fact
P ⊆ NP

Examples
PRIMES∈P
3-Coloring-Problem: It is widely assumed that
3COL := {G : G is 3-colorable finite Graph} /∈ P
But ∀G ∈ 3COL exists a PT C that makes G 3-colored⇒ 3COL ∈ NP.

S.Neukamm () JASS ’05 10 / 48



Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

f is easy to compute

f is hard to invert.

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)
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Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms
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Complexity Theory - Basic Definitions
Randomized Algorithm

1 1 0 0 1 0 1 1 0 0x =
Input

Algorithm

0 1 0

1 0 0 0 1 0 1

1 1 0 0

0 1 1 1 0 0

A(x)

{0, 1}

randomized algorithm

coin-flipping device

probabistic polynomial time, if worst case running time (n) ≤ poly(n) ∀n
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Complexity Theory - Basic Definitions
Complexity Class BPP

A

decision problem L

L

x

x

P (A(x) = χL(x)) ≥ 2
3

polynomial time⇒

L ∈ BPP

randomized

Notes
BPP remains same with
P (A(x) = χL(x)) ≥ 1

2 + 1
p(|x|) , p polynomial instead.

BPP ⇔ ’efficiently’ computable.
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One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

f is hard to invert.

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .
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One-Way Function
Length Preserving One-way Functions.

Definition
A function f : {0, 1}∗ → {0, 1}∗is called length preserving if

∀x ∈ {0, 1}∗ : |f (x)| = |x |
A permutation is a length-preserving function f which is 1-1.

Lemma (Length-preserving)
If there exists a one-way function, then we can construct a length-preserving
one-way function f :

∀x ∈ {0, 1}∗ : |f (x)| = |x |
Proof by reducibility arguments.
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One-Way Function - In Search of Examples
Factoring.

FACTORING-problem

FACTORING

Instance: positive integer n
Question: Find the prime factorization n =

∏
i pei

i

Algorithms
NUMBER FIELD SIEVE (1990)
sub-exponential expected running time exp(1.9(log n)1/3(log log n)2/3))

Special-purpose algorithms, like POLLARD´S p − 1
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Candidates Based on Factoring.
A One-Way Function by Rivest, Shamir, Adleman

RSA function

RSAn,e where n = pq, |p| = |q| primes, gcd(e, ϕ(n)) = 1
input: x positive integer
output: RSAn,e(x) := xe mod n

RSAn,e assumed to be one-way

Fact (FACTORING vs. INVERTING-RSA)
If n can be factored by a PPT⇒ RSAn,e can be inverted by a PPT
INVERTING-RSA≤P FACTORING

Open Problem -FACTORING vs. INVERTING-RSA
Are FACTORING and INVERTING-RSA computationally equivalent?
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Candidates Based on Factoring.
The SQUARE-Function by Rabin

Rabin´s SQUARE function

SQUAREn where n = pq, p, q primes and |p| = |q|
input: x ∈ Z∗

n
output: SQUAREn(x) := x2 mod n

SQUAREn is not 1-1

But SQUAREn restricted to Qn is a permutation, if
n ∈ {pq : p, q distinct odd primes, |p| = |q|, p ≡ q ≡ 3 mod 4}
Qn := {x : x ∈ Z∗

p, ∃y ∈ Z : y2 ≡ x mod n} quadratic-residues

Fact (FACTORING vs. INVERTING-SQUARE)
FACTORING(n) and INVERTING-SQUAREn are computationally equivalent!
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One-Way Function - In Search of Examples
DLP The Discrete Logarithm Problem

DLP - discrete logarithm problem

DLP
Instance: a finite cyclic Group G of order n

a generator α of G
an element β ∈ G

Question: Find the integer x , 0 ≤ x ≤ n − 1 :
αx = β

Given the prime factorization n =
∏

i pei
i the DLP in G can be reduced to

DLP´s in the groups Z∗
pi

Algorithms
Best randomized algorithms in sub-exponential running time.
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Candidates Based on DLP.
The EXP Function

EXP function

EXPp,α where p prime and α generator of Z∗
p

input: x ∈ Z∗
p

output: EXPp,α(x) := αx mod p

EXP is one-way, assuming DLP is hard
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One-Way Function
Necessary Assumptions

Assumptions for concrete candidates:

FACTORING efficiently computable⇒RSA not one-way
FACTORING efficiently computable⇔SQUARING not one-way
DLP efficiently computable ⇔EXP not one-way

Traditional assumption. hard to break in worst case
f computable by PT⇒ inverse under f computable by non-det. PT:
↪→ P = NP ⇒ One-Way Function not exist.

Intractability assumption. hard to break in average
We assume the adversary uses a PPT
↪→ NP ⊆ BPP ⇒ One-Way Function not exist. (NP * BPP ⇒ P 6= NP)
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One-Way Function
Existence of One-Way Function cannot be proved yet.

P
BPP NP

Problem
Tradtional assumption and Intractability assumption are only necessary
but not sufficient conditions.

Existence of One-Way Functions not provable yet.

Implementation based on reasonable ’intractability assumptions’, like
FACTORING, DLP.
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Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain
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Collection Of One-Way Functions

A larger View: Collection

fi : Di → {0, 1}∗

The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD
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Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N
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Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A fi(x)

collection (SI , SD, A)
S.Neukamm () JASS ’05 28 / 48



Collection Of One Way Functions
Definition.

Definition
Let I be a set of indices and Di ⊂ {0, 1}∗ finite ∀i ∈ I.
A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}

satisfying the following two conditions
1 There exists tree PPT SI, SD, A, such that

SI on input 1n outputs an i ∈ {0, 1}n ∩ I
SD on input i ∈ I outputs an x ∈ Di

A on input i ∈ I and x ∈ Di it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by SI, SD.
For every PPT A′, every polynomial p(·) and sufficiently large n:

P
�
A′(fIn (Xn), In) ∈ f−1

In
(fIn (Xn))

�
< 1

p(n)

In, Xn random variable describing output distribution of SI, SD
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Collection Of One-Way Functions
EXP := {EXPp,α : Zp−1 → {0, 1}∗}

Security parameter

n ∈ N

(p, α) : |p| = n

PPT SI Index sampler

x ∈ {1, ..., p − 1}

PPT SD Domain sampler αx mod pEXPp,α
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Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A fi(x)

collection (SI , SD, A)
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Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A (fi(x), ti)

collection (SI , SD, A)

trapdoor
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Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A (fi(x), ti)

trapdoor

x

PPT AT
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Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 01 1 0 0 1 0

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess
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Hard-Core Predicate - Definition

Idea of hard-core predicate.

f (x)x
f one-way
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Hard-Core Predicate
Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)
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Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)

Every efficient algorithm given f (x) can guess b(x)
only with success probability negligible better than 1

2
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Hard-Core Predicate
Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)

∀PPT G, ∀p polynomial and sufficiently large n:

P (G(f (Un)) = b(Un)) <
1
2

+
1

p(n)
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A Generic Hard-Core Predicate
A Hard-Core Predicate for ’any’ One-Way Function.

Instance
f : {0, 1}∗ → {0, 1}∗length preserving

g(x , r) := (f (x), r), where |x | = |r |
b(x , r) :=< x , r >mod2:=

∑
i(xi ri mod 2)

Theorem
Let f be a length-preserving one-way function, and let g, b defined like above.
Then b is a hard-core predicate of the function g.

Notes
It means: it is infeasible to guess the exclusive-or of a random subset of the
bits of x , when given f (x) and the subset itself, denoted by r .
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1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f
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· · · · · ·
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0 1 1 1 1 0r =

g

1 1 1 0 1 1

0 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

0

1 1 0 0 1 0x = 0 1 1 1 1 0r =

b

b(x, r) =
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0 1 1 1 1 0r =
1 1 1 0 1 1f(x) = 1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

’unpredictable’
0b(x, r) =

G(f(x), r)
by PPT
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G(f(x), r)
by PPT

If we can predict b with
non-negligible probabil-
ity...
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A Generic Hard-Core Predicate - Proof
Sketch.

Proof sketch.
We use a ’reducibility argument’ and proof by contradiction:

1 Suppose: b is not hard-core predicate of g
Then there exists an efficient algorithm G, that can guess b with
non-negligible probability better 1

2 :

⇒∃PPT G, ∃p polynomial:
ε(n) := P (G(f (Xn, Rn) = b(Xn, Rn))− 1

2 > 1
p(n)

2 Construct an efficient algorithm A (using G), which inverts f on input
(f (x), r) with non-negligible probability

3 Conclude:
∃G⇒ ∃A ⇒ f not one-way
⇒contradiction to f one-way.
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Proof - Inverting Algorithm A
Idea I - a mental experiment

Important Observation
b(x , α)⊕ b(x , β) = b(x , α⊕ β)
xi = b(x , α)⊕ b(x , α⊕ ei)

Mental Experiment
Suppose: Guessing by G works very good for a subset Sn ⊆ {0, 1}n:

P (G correct guess) = P (G(f (x), r) = b(x , r)) > 3
4 + 1

2p(n)

for all inputs f (x) with x ∈ Sn

for all sufficiently large n ∈ N
Algorithm A (guessing the i th bit of the inverse):

1 Randomly select r ∈ {0, 1}n

2 Compute zi := G(f (x), r)⊕G(f (x), r ⊕ ei)

Success probability: P
(
A(f (x)) ∈ f−1(f (x))

)
> 1

2 + 3
4p(n)

↪→ Repetition and rule by majority⇒ efficiently computes xi
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Proof - Inverting Algorithm A
Idea II - Use G and Make Own Guess

Notice: b(x , α)⊕ b(x , α⊕ ei) = xi ∀x , α, i

Idea to construct A inverting f (x) for all x ∈ Sn

Select a special subset Sn, where G works sufficiently successful.

Use G to guess b(x , r ⊕ ei)

Make own guess ρ for b(x , r)

Both guess correct: xi = ρ⊕G(f (x), r ⊕ ei)

Claim I (Sn, where G guesses sufficiently good)

If b not hard-core, n sufficiently large, then there exists a subset Sn ⊆ {0, 1}n,
such that

’Large enough’: |Sn| ≥ ε(n)
2 2n

’Succesful enough’: ∀x ∈ Sn : π(x) := P (G(x , Rn) = b(x , Rn)) ≥ 1
2 + ε(n)

2
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Proof - Inverting Algorithm A
Idea II - ρJ our own guess

Our guess
Randomly select k strings s1, ..., sk ∈ {0, 1}n and k predicates
σ1, ..., σk ∈ {0, 1} (by Laplace-Experiment)

for every (non empty) index-subset J ⊆ {1, ..., k}:

rJ :=
⊕
j∈J

sj

⇒b(x , rJ) = b(x ,
⊕
j∈J

sj) =
⊕
j∈J

b(x , sj)

⇒ρJ :=
⊕
j∈J

σj our guess of b(x , rJ)

Probability that ρJ = b(x , rJ) for all subsets J ∈ {1, ..., k} is 2−k
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Proof - Inverting Algorithm A
The Algorithm

Algorithm (guesses i th bit)
Let A be the following PPT algorithm:

1 Set k :=
⌈
log2(2n · p(n)2 + 1

⌉
2 Uniformly and Independent select s1, ..., sk ∈ {0, 1}n, σ1, ..., σk ∈ {0, 1}
3 ∀J ⊆ {1, ..., k}, J non-empty compute:

rJ ←
L

j∈J sj

ρJ ←
L

j∈J σj

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei)

4 Output z the majority value of the zJ
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Proof - Inverting Algorithm A
Observing Events.

rJ ←
⊕

j∈J sj sj ∈ {0, 1}n randomly chosen
ρJ ←

⊕
j∈J σj σj ∈ {0, 1} randomly chosen

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei) compare: xi = b(x , rJ)⊕ b(x , rJ ⊕ ei)

Events of interest
Event E : G guessing correct for majority of subsets J ⊆ {1, ..., k}:
E : |{J : G(f (x), rJ ⊕ ei) = b(x , rJ ⊕ ei)}| > 1

2 (2k − 1)

Event F : our guess correct for all subsets:
F : ρJ = b(x , rJ) ∀J ⊆ {1, ..., k}

Probabilities
Event E :
P (E|x ∈ Sn) > 1

2 (this we have to prove!)

Event F :
P (F|x ∈ Sn) = P (∀J : σJ = b(x , sJ)|x ∈ Sn) = 2−k (Bernoulli)
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Proof - Inverting Algorithm A
Success Probability

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei)
P (E|x ∈ Sn) > 1

2 E : G correct for the majority of all J ’s
P (F|x ∈ Sn) = 2−k F : ρJ correct for all J ’s
|Sn| > ε

2 · 2
n ≥ 1

2p(n)2
n k :=

⌈
log2(2n · p(n)2 + 1

⌉
Success Probability of Algorithm

P
(
A(f (x)) outputs i th bit of an inverse of f (x)

)
=P (For majority of all J ’s: zJ = xi) = P (E ∧ F|x ∈ Sn)

=P (E) · P (F) · P (x ∈ Sn) (Independence to be proved!)

>
1
2
· 2−k · |Sn|

2n =
1

8np(n)3 + p(n)
=

1
poly(n)

not negligible!!!

↪→ By repeating for all bits: we can efficiently compute x .
↪→ Contradiction to ’f is one-way’⇒ b is hard-core Predicate
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Proof
Claims to be proved

Claim I: There existst Sn, where G guesses sufficiently good
If b not hard-core, n sufficiently large, then there exists a subset Sn ⊆ {0, 1}n,
such that

’Large enough’: |Sn| ≥ ε(n)
2 2n

’Succesful enough’: ∀x ∈ Sn : π(x) := P (G(x , Rn) = b(x , Rn)) ≥ 1
2 + ε(n)

2

Claim II: P (E|x ∈ Sn) > 1
2

For every x ∈ Sn:
P

(
|{J : G(f (x), rJ ⊕ ei) = b(x , rJ ⊕ ei)}| > 1

2 (2k − 1)
)
> 1− 1

2p(n)
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one-way functions are important primitives.

Formalizing and abstracting
The concept of one-way functions abstracts the central idea of many common
cryptosystems:

RSA

RABIN-SQUARE

ELGAMAL

As a basis
The introduced concept is a basis for more applicable theories:

public key cryptosystems

pseudorandom sequences

hash functions

...
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Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate
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