
Complexity-Theoretic Cryptography

Stefan Neukamm
stefan.neukamm@mytum.de

Joint Advanced Student School ’05

S.Neukamm () JASS ’05 1 / 48

Outline

1 Introduction
The Informal Definition of One-Way Function.

2 Complexity Theory - Basic Definitions
Time Complexity
An Intermezzo: One-Way Function - Definition I
Probabilistic Time Complexity

3 One-Way Function
Definition
Candidates for One-Way Functions
Collection of One-Way Functions
Collection of Trapdoor Functions

4 Hard-Core Predicate
Motivation - Bit-Security of EXP
Definition
A generic Hard-Core Predicate

5 Epilog

S.Neukamm () JASS ’05 2 / 48

Cryptography
Complexity Theoretical Approach

plaintext m ciphertext cencryption

adversary:
• Is there plaintext information left in

the ciphertext?

• I have unlimited computational
power!

Information Theoretic Approach

S.Neukamm () JASS ’05 3 / 48

Cryptography
Complexity Theoretical Approach

plaintext m ciphertext cencryption

adversary:
• Can I efficiently extract plaintext in-

formation?

• I only have limited computational
ressources!

Complexity Theoretic Approach

S.Neukamm () JASS ’05 3 / 48

One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)

S.Neukamm () JASS ’05 4 / 48

One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)

S.Neukamm () JASS ’05 4 / 48

One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)

S.Neukamm () JASS ’05 4 / 48

One-Way Function
Informal Definition.

x f (x)

easy

hard

easy (f (x), tf)

Definition
A function f is called one-way, if f is easy to compute but hard to invert.

S.Neukamm () JASS ’05 4 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

One-Way Function
Road Map to Formalize the Definition.

Find proper definitions of easy and hard.
Use computational complexity theory:

Classify problems according to their computational difficulty.
Classify problems according to needed resources (like time, storage
space,...).
Our focus: time complexity .
Computational models: Turing machine, boolean circuits,...

Basic definitions of complexity theory.

S.Neukamm () JASS ’05 5 / 48

Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output

S.Neukamm () JASS ’05 6 / 48

Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

’length’ or ’size’ of x

|x|

Input

Algorithm

Output

S.Neukamm () JASS ’05 6 / 48

Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

’length’ or ’size’ of x

|x|

TIME
[steps]

running time (x, A)

start halt

Input

Algorithm

Output

S.Neukamm () JASS ’05 6 / 48

Complexity Theory - Basic Definitions
Algorithm; Running Time.

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

’length’ or ’size’ of x

|x|

TIME
[steps]

running time (x, A)

start halt

Input

Algorithm

Output

worst case running time (n) ≥ running time (x, A) ∀x : |x| ≤ n

S.Neukamm () JASS ’05 6 / 48

Complexity Theory - Basic Definitions
Polynomial Time Algorithm

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output

PT

worst case running time (n) ≤ poly(n) ∀n

n

S.Neukamm () JASS ’05 7 / 48

Complexity Theory - Basic Definitions
Polynomial Time Algorithm

1 1 0 0 1 0 1 1 0 0Ax = = A(x)

Input

Algorithm

Output

PT

worst case running time (n) ≤ poly(n) ∀n

n

Otherwise: Exponential time algorithm

S.Neukamm () JASS ’05 7 / 48

Complexity Theory - Basic Definitions
Polynomial Time vs. Exponential Time.

growing of poly., sub-exp., exp. functions

f (x) n2 n3 exp(
√

n ln n) 2n

x
10 102 103 1.2 · 102 103

50 2.5 · 103 1.2 · 105 106 1015

100 104 106 2 · 109 1030

Notes
polynomial time algorithm⇔ efficient

exponential time algorithm⇔ inefficient

S.Neukamm () JASS ’05 8 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

A(x) = 1

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

A(x) = 0

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

x

A(x) = χL(x)

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

x

A(x) = χL(x)

polynomial time⇒

L ∈ P

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Classes

A

decision problem L

L

x

A(x) = 1

polynomial time⇒

L ∈ NP

wx witness

S.Neukamm () JASS ’05 9 / 48

Complexity Theory - Basic Definitions
Complexity Class.

Fact
P ⊆ NP

Examples
PRIMES∈P
3-Coloring-Problem: It is widely assumed that
3COL := {G : G is 3-colorable finite Graph} /∈ P
But ∀G ∈ 3COL exists a PT C that makes G 3-colored⇒ 3COL ∈ NP.

S.Neukamm () JASS ’05 10 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

f is easy to compute

f is hard to invert.

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

f is easy to compute

f is hard to invert.

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PT A: A(x) = f (x) ∀x ∈ {0, 1}∗

f is hard to invert.

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PT A: A(x) = f (x) ∀x ∈ {0, 1}∗

f is hard to invert.

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PT A: A(x) = f (x) ∀x ∈ {0, 1}∗

@PT A′: A′(f (x)) = x ′ with f (x ′) = f (x) ∀x ∈ {0, 1}n

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I.

Definition (temporary)
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PT A: A(x) = f (x) ∀x ∈ {0, 1}∗

@PT A′: A′(f (x)) = x ′ with f (x ′) = f (x) ∀x ∈ {0, 1}n

Example (FACTORING)
Let fmult(p, q) := pq, p, q primes.
Assumption: FACTORING/∈ P ⇒ fmult is one-way (according to the above
definition)

S.Neukamm () JASS ’05 11 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Intermezzo
One-Way Function - Definition I (to be improved?)

Observation of fmult

for p, q ∈ PRIMES : |p| ≈ |q| huge, inverting fmult(p, q) is indeed hard

But for half of the integers, finding an inverse of n := fmult(p, q) is very
easy:

fmult(n/2, 2) ∈ f−1
mult(n)

⇒ Definition has to be improved.

Substitute: worst-case complexity⇒ average-case complexity

success probability of an inverting algorithm should be negligible

⇒ randomized algorithms

S.Neukamm () JASS ’05 12 / 48

Complexity Theory - Basic Definitions
Randomized Algorithm

1 1 0 0 1 0 1 1 0 0x =
Input

Algorithm

0 1 0

1 0 0 0 1 0 1

1 1 0 0

0 1 1 1 0 0

A(x)

{0, 1}

randomized algorithm

coin-flipping device

probabistic polynomial time, if worst case running time (n) ≤ poly(n) ∀n

S.Neukamm () JASS ’05 13 / 48

Complexity Theory - Basic Definitions
Complexity Class BPP

A

decision problem L

L

x

x

P (A(x) = χL(x)) ≥ 2
3

polynomial time⇒

L ∈ BPP

randomized

Notes
BPP remains same with
P (A(x) = χL(x)) ≥ 1

2 + 1
p(|x|) , p polynomial instead.

BPP ⇔ ’efficiently’ computable.

S.Neukamm () JASS ’05 14 / 48

Complexity Theory - Basic Definitions
Complexity Class BPP

A

decision problem L

L

x

x

P (A(x) = χL(x)) ≥ 2
3

polynomial time⇒

L ∈ BPP

randomized

Notes
BPP remains same with
P (A(x) = χL(x)) ≥ 1

2 + 1
p(|x|) , p polynomial instead.

BPP ⇔ ’efficiently’ computable.

S.Neukamm () JASS ’05 14 / 48

S.Neukamm () JASS ’05 15 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

f is hard to invert.

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

f is hard to invert.

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P (A′ successful) is negligible

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P (A′ successful)< 1
p(n)

for all polynomials p and sufficiently large integers n

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P (A′successful)< 1
p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (x)) ∈ f−1(f (x))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (Un)) ∈ f−1(f (Un))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (Un), 1n) ∈ f−1(f (Un))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (Un), 1n) ∈ f−1(f (Un))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (Un), 1n) ∈ f−1(f (Un))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Definition.

Definition
A function f : {0, 1}∗ → {0, 1}∗ is called one-way if the following two
conditions hold

∃PPT A : ∀x ∈ {0, 1}∗ : A(x) = f (x)

∀PPT A′ : P
(
A′(f (Un), 1n) ∈ f−1(f (Un))

)
< 1

p(n) ∀p poly.,∀n ≥ Np

Notes
Adversary is not unable to invert f , but has low probability to do so.

Definition works with asymptotic complexity: A sufficiently large security
parameter n makes inversion infeasible.

If f is 1− 1 then f−1(f (x)) = x .

S.Neukamm () JASS ’05 16 / 48

One-Way Function
Length Preserving One-way Functions.

Definition
A function f : {0, 1}∗ → {0, 1}∗is called length preserving if

∀x ∈ {0, 1}∗ : |f (x)| = |x |
A permutation is a length-preserving function f which is 1-1.

Lemma (Length-preserving)
If there exists a one-way function, then we can construct a length-preserving
one-way function f :

∀x ∈ {0, 1}∗ : |f (x)| = |x |
Proof by reducibility arguments.

S.Neukamm () JASS ’05 17 / 48

One-Way Function - In Search of Examples
Factoring.

FACTORING-problem

FACTORING

Instance: positive integer n
Question: Find the prime factorization n =

∏
i pei

i

Algorithms
NUMBER FIELD SIEVE (1990)
sub-exponential expected running time exp(1.9(log n)1/3(log log n)2/3))

Special-purpose algorithms, like POLLARD´S p − 1

S.Neukamm () JASS ’05 18 / 48

Candidates Based on Factoring.
A One-Way Function by Rivest, Shamir, Adleman

RSA function

RSAn,e where n = pq, |p| = |q| primes, gcd(e, ϕ(n)) = 1
input: x positive integer
output: RSAn,e(x) := xe mod n

RSAn,e assumed to be one-way

Fact (FACTORING vs. INVERTING-RSA)
If n can be factored by a PPT⇒ RSAn,e can be inverted by a PPT
INVERTING-RSA≤P FACTORING

Open Problem -FACTORING vs. INVERTING-RSA
Are FACTORING and INVERTING-RSA computationally equivalent?

S.Neukamm () JASS ’05 19 / 48

Candidates Based on Factoring.
The SQUARE-Function by Rabin

Rabin´s SQUARE function

SQUAREn where n = pq, p, q primes and |p| = |q|
input: x ∈ Z∗

n
output: SQUAREn(x) := x2 mod n

SQUAREn is not 1-1

But SQUAREn restricted to Qn is a permutation, if
n ∈ {pq : p, q distinct odd primes, |p| = |q|, p ≡ q ≡ 3 mod 4}
Qn := {x : x ∈ Z∗

p, ∃y ∈ Z : y2 ≡ x mod n} quadratic-residues

Fact (FACTORING vs. INVERTING-SQUARE)
FACTORING(n) and INVERTING-SQUAREn are computationally equivalent!

S.Neukamm () JASS ’05 20 / 48

One-Way Function - In Search of Examples
DLP The Discrete Logarithm Problem

DLP - discrete logarithm problem

DLP
Instance: a finite cyclic Group G of order n

a generator α of G
an element β ∈ G

Question: Find the integer x , 0 ≤ x ≤ n − 1 :
αx = β

Given the prime factorization n =
∏

i pei
i the DLP in G can be reduced to

DLP´s in the groups Z∗
pi

Algorithms
Best randomized algorithms in sub-exponential running time.

S.Neukamm () JASS ’05 21 / 48

Candidates Based on DLP.
The EXP Function

EXP function

EXPp,α where p prime and α generator of Z∗
p

input: x ∈ Z∗
p

output: EXPp,α(x) := αx mod p

EXP is one-way, assuming DLP is hard

S.Neukamm () JASS ’05 22 / 48

One-Way Function
Necessary Assumptions

Assumptions for concrete candidates:

FACTORING efficiently computable⇒RSA not one-way
FACTORING efficiently computable⇔SQUARING not one-way
DLP efficiently computable ⇔EXP not one-way

Traditional assumption. hard to break in worst case
f computable by PT⇒ inverse under f computable by non-det. PT:
↪→ P = NP ⇒ One-Way Function not exist.

Intractability assumption. hard to break in average
We assume the adversary uses a PPT
↪→ NP ⊆ BPP ⇒ One-Way Function not exist. (NP * BPP ⇒ P 6= NP)

S.Neukamm () JASS ’05 23 / 48

One-Way Function
Existence of One-Way Function cannot be proved yet.

P
BPP NP

Problem
Tradtional assumption and Intractability assumption are only necessary
but not sufficient conditions.

Existence of One-Way Functions not provable yet.

Implementation based on reasonable ’intractability assumptions’, like
FACTORING, DLP.

S.Neukamm () JASS ’05 24 / 48

S.Neukamm () JASS ’05 25 / 48

Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain

S.Neukamm () JASS ’05 26 / 48

Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

infinite domain

Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain

S.Neukamm () JASS ’05 26 / 48

Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

infinite domain
Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain

S.Neukamm () JASS ’05 26 / 48

Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

infinite domain
Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain

S.Neukamm () JASS ’05 26 / 48

Collection Of One-Way Functions
Motivation

One-way function - up to now...

f : {0, 1}∗ → {0, 1}∗

infinite domain
Suitable for abstract discussion

..but not for natural candidates:

EXPp,α : {1, ..., p− 2} → {0, 1}∗

finite domain

S.Neukamm () JASS ’05 26 / 48

Collection Of One-Way Functions

A larger View: Collection

fi : Di → {0, 1}∗

The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions

A larger View: Collection

finite domain

fi : Di → {0, 1}∗

The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions

A larger View: Collection

finite domain

F := {fi : Di → {0, 1}∗}i∈I

The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions

A larger View: Collection

F := {fi : Di → {0, 1}∗}i∈I

infinite set

The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions

A larger View: Collection

F := {fi : Di → {0, 1}∗}i∈I

infinite set
The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions

A larger View: Collection

F := {fi : Di → {0, 1}∗}i∈I

infinite set
The fi sharing a common Index Sampler SI

The fi sharing a common Domain Sampler SD

S.Neukamm () JASS ’05 27 / 48

Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

S.Neukamm () JASS ’05 28 / 48

Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

S.Neukamm () JASS ’05 28 / 48

Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler

S.Neukamm () JASS ’05 28 / 48

Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A fi(x)

S.Neukamm () JASS ’05 28 / 48

Collection Of One-Way Functions
F := {fi : Di → {0, 1}∗}i∈I

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A fi(x)

collection (SI , SD, A)
S.Neukamm () JASS ’05 28 / 48

Collection Of One Way Functions
Definition.

Definition
Let I be a set of indices and Di ⊂ {0, 1}∗ finite ∀i ∈ I.
A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}

satisfying the following two conditions
1 There exists tree PPT SI, SD, A, such that

SI on input 1n outputs an i ∈ {0, 1}n ∩ I
SD on input i ∈ I outputs an x ∈ Di

A on input i ∈ I and x ∈ Di it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by SI, SD.
For every PPT A′, every polynomial p(·) and sufficiently large n:

P
�
A′(fIn (Xn), In) ∈ f−1

In
(fIn (Xn))

�
< 1

p(n)

In, Xn random variable describing output distribution of SI, SD

S.Neukamm () JASS ’05 29 / 48

Collection Of One Way Functions
Definition.

Definition
Let I be a set of indices and Di ⊂ {0, 1}∗ finite ∀i ∈ I.
A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}

satisfying the following two conditions
1 There exists tree PPT SI, SD, A, such that

SI on input 1n outputs an i ∈ {0, 1}n ∩ I
SD on input i ∈ I outputs an x ∈ Di

A on input i ∈ I and x ∈ Di it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by SI, SD.

For every PPT A′, every polynomial p(·) and sufficiently large n:
P
�
A′(fIn (Xn), In) ∈ f−1

In
(fIn (Xn))

�
< 1

p(n)

In, Xn random variable describing output distribution of SI, SD

S.Neukamm () JASS ’05 29 / 48

Collection Of One Way Functions
Definition.

Definition
Let I be a set of indices and Di ⊂ {0, 1}∗ finite ∀i ∈ I.
A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}

satisfying the following two conditions
1 There exists tree PPT SI, SD, A, such that

SI on input 1n outputs an i ∈ {0, 1}n ∩ I
SD on input i ∈ I outputs an x ∈ Di

A on input i ∈ I and x ∈ Di it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by SI, SD.
For every PPT A′, every polynomial p(·) and sufficiently large n:

P
�
A′(fIn (Xn), In) ∈ f−1

In
(fIn (Xn))

�
< 1

p(n)

In, Xn random variable describing output distribution of SI, SD

S.Neukamm () JASS ’05 29 / 48

Collection Of One Way Functions
Definition.

Definition
Let I be a set of indices and Di ⊂ {0, 1}∗ finite ∀i ∈ I.
A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}

satisfying the following two conditions
1 There exists tree PPT SI, SD, A, such that

SI on input 1n outputs an i ∈ {0, 1}n ∩ I
SD on input i ∈ I outputs an x ∈ Di

A on input i ∈ I and x ∈ Di it holds that A(i, x) = fi(x)

2 The probability of finding an inverse for every PPT given i and an element
in range is negligible, if we consider the distribution induced by SI, SD.
For every PPT A′, every polynomial p(·) and sufficiently large n:

P
�
A′(fIn (Xn), In) ∈ f−1

In
(fIn (Xn))

�
< 1

p(n)

In, Xn random variable describing output distribution of SI, SD

S.Neukamm () JASS ’05 29 / 48

Collection Of One-Way Functions
EXP := {EXPp,α : Zp−1 → {0, 1}∗}

Security parameter

n ∈ N

(p, α) : |p| = n

PPT SI Index sampler

x ∈ {1, ..., p − 1}

PPT SD Domain sampler αx mod pEXPp,α

S.Neukamm () JASS ’05 30 / 48

Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A fi(x)

collection (SI , SD, A)

S.Neukamm () JASS ’05 31 / 48

Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A (fi(x), ti)

collection (SI , SD, A)

trapdoor

S.Neukamm () JASS ’05 31 / 48

Collection Of Trapdoor Functions

Security parameter

n ∈ N

i ∈ I ∩ {0, 1}n

PPT SI Index sampler

x ∈ Di

PPT SD Domain sampler PPT A (fi(x), ti)

trapdoor

x

PPT AT

S.Neukamm () JASS ’05 31 / 48

S.Neukamm () JASS ’05 32 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 01 1 0 0 1 0

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 0infeasible1 1 0 0 1 0

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 0infeasible

efficiently

1 1 0 0 1 0

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 0infeasible

efficiently

1 1 0 0 1 0

as hard as inverting

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 0infeasible

efficiently

1 1 0 0 1 0

as hard as inverting

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Motivation
Bit-Security of EXP

How secure is EXP?

EXPp,α(x)x

0 1 0 1 1 0infeasible

efficiently

1 1 0 0 1 0

as hard as inverting

A one-way function doesn’t hide partial information

But at least one Bit of information is hard to guess

S.Neukamm () JASS ’05 33 / 48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

f (x)x
f one-way

S.Neukamm () JASS ’05 34 / 48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

f (x)x
f one-way

b(x) ∈ {0, 1}

S.Neukamm () JASS ’05 34 / 48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

f (x)x
f one-way

b(x) ∈ {0, 1}

not efficien
tly

com
putable

S.Neukamm () JASS ’05 34 / 48

Hard-Core Predicate - Definition

Idea of hard-core predicate.

hard-core predicate of f

f (x)x
f one-way

b(x) ∈ {0, 1}

not efficien
tly

com
putable

S.Neukamm () JASS ’05 34 / 48

Hard-Core Predicate
Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)

S.Neukamm () JASS ’05 35 / 48

Hard-Core Predicate
Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)

Every efficient algorithm given f (x) can guess b(x)
only with success probability negligible better than 1

2

S.Neukamm () JASS ’05 35 / 48

Hard-Core Predicate
Definition.

Instance
a function f : {0, 1}∗ → {0, 1}∗

a predicate b : {0, 1}∗ → {0, 1}

Definition
b is a hard-core predicate of f , iff

∃PPT A, such that ∀x : A(x) = b(x)

∀PPT G, ∀p polynomial and sufficiently large n:

P (G(f (Un)) = b(Un)) <
1
2

+
1

p(n)

S.Neukamm () JASS ’05 35 / 48

A Generic Hard-Core Predicate
A Hard-Core Predicate for ’any’ One-Way Function.

Instance
f : {0, 1}∗ → {0, 1}∗length preserving

g(x , r) := (f (x), r), where |x | = |r |
b(x , r) :=< x , r >mod2:=

∑
i(xi ri mod 2)

Theorem
Let f be a length-preserving one-way function, and let g, b defined like above.
Then b is a hard-core predicate of the function g.

Notes
It means: it is infeasible to guess the exclusive-or of a random subset of the
bits of x , when given f (x) and the subset itself, denoted by r .

S.Neukamm () JASS ’05 36 / 48

1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

S.Neukamm () JASS ’05 37 / 48

1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =

g

1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =

g

1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

1 1 0 0 1 0

0 1 1 1 1 0
· · · · · ·

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =

g

1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

0 1 0 0 1 0

0

∑
0

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =

g

1 1 1 0 1 1

0 1 0 0 1 0

f(x) =

x =

f

0 1 1 1 1 0r =

0

1 1 0 0 1 0x = 0 1 1 1 1 0r =

b

b(x, r) =

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =
1 1 1 0 1 1f(x) = 1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

’unpredictable’
0b(x, r) =

G(f(x), r)
by PPT

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =
1 1 1 0 1 1f(x) = 1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0b(x, r) =

G(f(x), r)
by PPT

If we can predict b with
non-negligible probabil-
ity...

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =
1 1 1 0 1 1f(x) = 1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0b(x, r) =

G(f(x), r)
by PPT

If we can predict b with
non-negligible probabil-
ity...

...,then we can find an in-
verse of f(x) with non-
negligible probability!

S.Neukamm () JASS ’05 37 / 48

0 1 1 1 1 0r =
1 1 1 0 1 1f(x) = 1 1 1 0 1 1

1 1 0 0 1 0

f(x) =

x =

f

0b(x, r) =

G(f(x), r)
by PPT

If we can predict b with
non-negligible probabil-
ity...

...,then we can find an in-
verse of f(x) with non-
negligible probability!

S.Neukamm () JASS ’05 37 / 48

A Generic Hard-Core Predicate - Proof
Sketch.

Proof sketch.
We use a ’reducibility argument’ and proof by contradiction:

1 Suppose: b is not hard-core predicate of g
Then there exists an efficient algorithm G, that can guess b with
non-negligible probability better 1

2 :

⇒∃PPT G, ∃p polynomial:
ε(n) := P (G(f (Xn, Rn) = b(Xn, Rn))− 1

2 > 1
p(n)

2 Construct an efficient algorithm A (using G), which inverts f on input
(f (x), r) with non-negligible probability

3 Conclude:
∃G⇒ ∃A ⇒ f not one-way
⇒contradiction to f one-way.

S.Neukamm () JASS ’05 38 / 48

Proof - Inverting Algorithm A
Idea I - a mental experiment

Important Observation
b(x , α)⊕ b(x , β) = b(x , α⊕ β)
xi = b(x , α)⊕ b(x , α⊕ ei)

Mental Experiment
Suppose: Guessing by G works very good for a subset Sn ⊆ {0, 1}n:

P (G correct guess) = P (G(f (x), r) = b(x , r)) > 3
4 + 1

2p(n)

for all inputs f (x) with x ∈ Sn

for all sufficiently large n ∈ N
Algorithm A (guessing the i th bit of the inverse):

1 Randomly select r ∈ {0, 1}n

2 Compute zi := G(f (x), r)⊕G(f (x), r ⊕ ei)

Success probability: P
(
A(f (x)) ∈ f−1(f (x))

)
> 1

2 + 3
4p(n)

↪→ Repetition and rule by majority⇒ efficiently computes xi

S.Neukamm () JASS ’05 39 / 48

Proof - Inverting Algorithm A
Idea II - Use G and Make Own Guess

Notice: b(x , α)⊕ b(x , α⊕ ei) = xi ∀x , α, i

Idea to construct A inverting f (x) for all x ∈ Sn

Select a special subset Sn, where G works sufficiently successful.

Use G to guess b(x , r ⊕ ei)

Make own guess ρ for b(x , r)

Both guess correct: xi = ρ⊕G(f (x), r ⊕ ei)

Claim I (Sn, where G guesses sufficiently good)

If b not hard-core, n sufficiently large, then there exists a subset Sn ⊆ {0, 1}n,
such that

’Large enough’: |Sn| ≥ ε(n)
2 2n

’Succesful enough’: ∀x ∈ Sn : π(x) := P (G(x , Rn) = b(x , Rn)) ≥ 1
2 + ε(n)

2

S.Neukamm () JASS ’05 40 / 48

Proof - Inverting Algorithm A
Idea II - ρJ our own guess

Our guess
Randomly select k strings s1, ..., sk ∈ {0, 1}n and k predicates
σ1, ..., σk ∈ {0, 1} (by Laplace-Experiment)

for every (non empty) index-subset J ⊆ {1, ..., k}:

rJ :=
⊕
j∈J

sj

⇒b(x , rJ) = b(x ,
⊕
j∈J

sj) =
⊕
j∈J

b(x , sj)

⇒ρJ :=
⊕
j∈J

σj our guess of b(x , rJ)

Probability that ρJ = b(x , rJ) for all subsets J ∈ {1, ..., k} is 2−k

S.Neukamm () JASS ’05 41 / 48

Proof - Inverting Algorithm A
The Algorithm

Algorithm (guesses i th bit)
Let A be the following PPT algorithm:

1 Set k :=
⌈
log2(2n · p(n)2 + 1

⌉
2 Uniformly and Independent select s1, ..., sk ∈ {0, 1}n, σ1, ..., σk ∈ {0, 1}
3 ∀J ⊆ {1, ..., k}, J non-empty compute:

rJ ←
L

j∈J sj

ρJ ←
L

j∈J σj

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei)

4 Output z the majority value of the zJ

S.Neukamm () JASS ’05 42 / 48

Proof - Inverting Algorithm A
Observing Events.

rJ ←
⊕

j∈J sj sj ∈ {0, 1}n randomly chosen
ρJ ←

⊕
j∈J σj σj ∈ {0, 1} randomly chosen

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei) compare: xi = b(x , rJ)⊕ b(x , rJ ⊕ ei)

Events of interest
Event E : G guessing correct for majority of subsets J ⊆ {1, ..., k}:
E : |{J : G(f (x), rJ ⊕ ei) = b(x , rJ ⊕ ei)}| > 1

2 (2k − 1)

Event F : our guess correct for all subsets:
F : ρJ = b(x , rJ) ∀J ⊆ {1, ..., k}

Probabilities
Event E :
P (E|x ∈ Sn) > 1

2 (this we have to prove!)

Event F :
P (F|x ∈ Sn) = P (∀J : σJ = b(x , sJ)|x ∈ Sn) = 2−k (Bernoulli)

S.Neukamm () JASS ’05 43 / 48

Proof - Inverting Algorithm A
Success Probability

zJ ← ρJ ⊕G(f (x), rJ ⊕ ei)
P (E|x ∈ Sn) > 1

2 E : G correct for the majority of all J ’s
P (F|x ∈ Sn) = 2−k F : ρJ correct for all J ’s
|Sn| > ε

2 · 2
n ≥ 1

2p(n)2
n k :=

⌈
log2(2n · p(n)2 + 1

⌉
Success Probability of Algorithm

P
(
A(f (x)) outputs i th bit of an inverse of f (x)

)
=P (For majority of all J ’s: zJ = xi) = P (E ∧ F|x ∈ Sn)

=P (E) · P (F) · P (x ∈ Sn) (Independence to be proved!)

>
1
2
· 2−k · |Sn|

2n =
1

8np(n)3 + p(n)
=

1
poly(n)

not negligible!!!

↪→ By repeating for all bits: we can efficiently compute x .
↪→ Contradiction to ’f is one-way’⇒ b is hard-core Predicate

S.Neukamm () JASS ’05 44 / 48

Proof
Claims to be proved

Claim I: There existst Sn, where G guesses sufficiently good
If b not hard-core, n sufficiently large, then there exists a subset Sn ⊆ {0, 1}n,
such that

’Large enough’: |Sn| ≥ ε(n)
2 2n

’Succesful enough’: ∀x ∈ Sn : π(x) := P (G(x , Rn) = b(x , Rn)) ≥ 1
2 + ε(n)

2

Claim II: P (E|x ∈ Sn) > 1
2

For every x ∈ Sn:
P

(
|{J : G(f (x), rJ ⊕ ei) = b(x , rJ ⊕ ei)}| > 1

2 (2k − 1)
)
> 1− 1

2p(n)

S.Neukamm () JASS ’05 45 / 48

one-way functions are important primitives.

Formalizing and abstracting
The concept of one-way functions abstracts the central idea of many common
cryptosystems:

RSA

RABIN-SQUARE

ELGAMAL

As a basis
The introduced concept is a basis for more applicable theories:

public key cryptosystems

pseudorandom sequences

hash functions

...

S.Neukamm () JASS ’05 46 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Summary

Basic definitions of computational complexity theory

Formalized the definition of one-way function

Discussed necessary conditions, like ’intractability assumption’

Introduced the concept of one-way collections and trapdoor-collection

Defined the hard-core predicate

Proved the existence of a generic hard-core predicate

S.Neukamm () JASS ’05 47 / 48

Literature

O.Goldreich
Foundations of cryptography
2001, available online

S. Goldwasser, M. Bellare
Lecture notes on cryptography
2001, available online

A. Menezes, P. van Oorschot, S. Vanstone
Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

S.Neukamm () JASS ’05 48 / 48

Literature

O.Goldreich
Foundations of cryptography
2001, available online

S. Goldwasser, M. Bellare
Lecture notes on cryptography
2001, available online

A. Menezes, P. van Oorschot, S. Vanstone
Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

S.Neukamm () JASS ’05 48 / 48

Literature

O.Goldreich
Foundations of cryptography
2001, available online

S. Goldwasser, M. Bellare
Lecture notes on cryptography
2001, available online

A. Menezes, P. van Oorschot, S. Vanstone
Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

S.Neukamm () JASS ’05 48 / 48

	Introduction
	Motivation

	Complexity Theory - Basic Definitions
	Time Complexity
	An Intermezzo: One-Way Function - Definition I
	Probabilistic Time Complexity

	One-Way Function
	Definition
	Candidates for One-Way Functions
	Collection of One-Way Functions
	Collection of Trapdoor Functions

	Hard-Core Predicate
	Motivation - Bit-Security of EXP
	Definition
	A generic Hard-Core Predicate

	Epilog

