Complexity-Theoretic Cryptography

Stefan Neukamm
stefan. neukamm@mytum.de
Joint Advanced Student School '05

Outline

(1) Introduction

- The Informal Definition of One-Way Function.
(2) Complexity Theory - Basic Definitions
- Time Complexity
- An Intermezzo: One-Way Function - Definition I
- Probabilistic Time Complexity
(3) One-Way Function
- Definition
- Candidates for One-Way Functions
- Collection of One-Way Functions
- Collection of Trapdoor Functions
(4) Hard-Core Predicate
- Motivation - Bit-Security of EXP
- Definition
- A generic Hard-Core Predicate
(5) Epilog

Cryptography

Complexity Theoretical Approach

Information Theoretic Approach

plaintext $m —$ encryption
\rightarrow ciphertext c

adversary:

- Is there plaintext information left in the ciphertext?
- I have unlimited computational power!

Cryptography

Complexity Theoretical Approach

Complexity Theoretic Approach

 plaintext $m —$ encryption\rightarrow ciphertext c

adversary:

- Can I efficiently extract plaintext information?
- I only have limited computational ressources!

One-Way Function

Informal Definition.

One-Way Function

 Informal Definition.

One-Way Function

 Informal Definition.

One-Way Function

 Informal Definition.

Definition

A function f is called one-way, if f is easy to compute but hard to invert.

- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...)
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.

One-Way Function

Road Map to Formalize the Definition.

- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...).
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.
- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...)
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.
- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...).
- Ourfocus: time complexity
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.
- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...).
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.
- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...).
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.
- Find proper definitions of easy and hard.
- Use computational complexity theory:
- Classify problems according to their computational difficulty.
- Classify problems according to needed resources (like time, storage space,...).
- Our focus: time complexity.
- Computational models: Turing machine, boolean circuits,...
- Basic definitions of complexity theory.

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Complexity Theory - Basic Definitions

Algorithm; Running Time.

Complexity Theory - Basic Definitions

Algorithm; Running Time.

worst case running time $(n) \geq$ running time $(x, A) \quad \forall x:|x| \leq n$

Complexity Theory - Basic Definitions

Polynomial Time Algorithm

Complexity Theory - Basic Definitions

Polynomial Time Algorithm

Otherwise: Exponential time algorithm

Complexity Theory - Basic Definitions

Polynomial Time vs. Exponential Time.
growing of poly., sub-exp., exp. functions

$f(x)$	n^{2}	n^{3}	$\exp (\sqrt{n \ln n})$	2^{n}
x				
10	10^{2}	10^{3}	$1.2 \cdot 10^{2}$	10^{3}
50	$2.5 \cdot 10^{3}$	$1.2 \cdot 10^{5}$	10^{6}	10^{15}
100	10^{4}	10^{6}	$2 \cdot 10^{9}$	10^{30}

Notes

- polynomial time algorithm \Leftrightarrow efficient
- exponential time algorithm \Leftrightarrow inefficient

Complexity Theory - Basic Definitions

decision problem L

L

Complexity Theory - Basic Definitions

Complexity Classes
decision problem L
L
$A \longrightarrow A(x)=1$

Complexity Theory - Basic Definitions

decision problem L
L

Complexity Theory - Basic Definitions

decision problem L

Complexity Theory - Basic Definitions

decision problem L

$$
L \in \mathcal{P}
$$

Complexity Theory - Basic Definitions

decision problem L
w_{x} witness

L

$$
L \in \mathcal{N P}
$$

Complexity Theory - Basic Definitions

 Complexity Class.
Fact

- $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$

Examples

- Primes $\in \mathcal{P}$
- 3-Coloring-Problem: It is widely assumed that 3CoL :=\{G:G is 3-colorable finite Graph $\} \notin \mathcal{P}$ But $\forall G \in 3$ Col exists a PT C that makes G 3-colored $\Rightarrow 3$ CoL $\in \mathcal{N P}$.

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- f is easy to compute
- f is hard to invert.

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- f is easy to compute
- f is hard to invert.

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PT A: $\mathbf{A}(x)=f(x) \quad \forall x \in\{0,1\}^{*}$
- f is hard to invert.

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PT A: $\mathbf{A}(x)=f(x) \quad \forall x \in\{0,1\}^{*}$
- f is hard to invert.

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PT A: $\mathbf{A}(x)=f(x) \quad \forall x \in\{0,1\}^{*}$
- \#PT A': $\mathbf{A}^{\prime}(f(x))=x^{\prime}$ with $f\left(x^{\prime}\right)=f(x) \quad \forall x \in\{0,1\}^{n}$

Complexity Theory - Intermezzo
 One-Way Function - Definition I.

Definition (temporary)

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PT A: $\mathbf{A}(x)=f(x) \quad \forall x \in\{0,1\}^{*}$
- \#PT A': $\mathbf{A}^{\prime}(f(x))=x^{\prime}$ with $f\left(x^{\prime}\right)=f(x) \quad \forall x \in\{0,1\}^{n}$

Example (FACTORING)

Let $f_{\text {mult }}(p, q):=p q, \quad p, q$ primes.
Assumption: FACTORING $\not \mathcal{P} \Rightarrow f_{\text {mult }}$ is one-way (according to the above definition)

Complexity Theory - Intermezzo

One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRIMES : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible \Rightarrow randomized algorithms

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ Primes : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible \Rightarrow randomized algorithms

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRImes : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible \Rightarrow randomized algorithms

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRImes : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRImes : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRIMES : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible

Complexity Theory - Intermezzo
 One-Way Function - Definition I (to be improved?)

Observation of $f_{\text {mult }}$

- for $p, q \in$ PRIMES : $|p| \approx|q|$ huge, inverting $f_{\text {mult }}(p, q)$ is indeed hard
- But for half of the integers, finding an inverse of $n:=f_{\text {mult }}(p, q)$ is very easy:

$$
f_{\text {mult }}(n / 2,2) \in f_{\text {mult }}^{-1}(n)
$$

\Rightarrow Definition has to be improved.

- Substitute: worst-case complexity \Rightarrow average-case complexity
- success probability of an inverting algorithm should be negligible \Rightarrow randomized algorithms

Complexity Theory - Basic Definitions

 Randomized Algorithm
probabistic polynomial time, if worst case running time $(n) \leq \operatorname{poly}(n) \forall n$

Complexity Theory - Basic Definitions

Complexity Class $\mathcal{B P P}$
decision problem L

$$
L \in \mathcal{B P P}
$$

Complexity Theory - Basic Definitions

Complexity Class $\mathcal{B P P}$
decision problem L

Notes

- $\mathcal{B P P}$ remains same with

$$
\mathbf{P}(\mathbf{A}(x)=\chi L(x)) \geq \frac{1}{2}+\frac{1}{p(|x|)}, p \text { polynomial instead. }
$$

- $\mathcal{B P P} \Leftrightarrow$ 'efficiently' computable.

One-Way Function

 Definition.
Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- f is hard to invert.

One-Way Function

 Definition.
Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- f is hard to invert.

One-Way Function

 Definition.
Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\right.$ successful $)$ is negligible

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\right.$ successful $)<\frac{1}{p(n)}$ for all polynomials p and sufficiently large integers n

One-Way Function

 Definition.
Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\right.$ successful $)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}(f(x)) \in f^{-1}(f(x))\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\left(f\left(U_{n}\right)\right) \in f^{-1}\left(f\left(U_{n}\right)\right)\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\left(f\left(U_{n}\right), 1^{n}\right) \in f^{-1}\left(f\left(U_{n}\right)\right)\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\left(f\left(U_{n}\right), 1^{n}\right) \in f^{-1}\left(f\left(U_{n}\right)\right)\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

Notes

- Adversary is not unable to invert f, but has low probability to do so.

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\left(f\left(U_{n}\right), 1^{n}\right) \in f^{-1}\left(f\left(U_{n}\right)\right)\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

Notes

- Adversary is not unable to invert f, but has low probability to do so.
- Definition works with asymptotic complexity: A sufficiently large security parameter n makes inversion infeasible.

One-Way Function

Definition.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if the following two conditions hold

- \exists PPT A : $\forall x \in\{0,1\}^{*}: \mathbf{A}(x)=f(x)$
- \forall PPT A $\mathbf{A}^{\prime}: \mathbf{P}\left(\mathbf{A}^{\prime}\left(f\left(U_{n}\right), 1^{n}\right) \in f^{-1}\left(f\left(U_{n}\right)\right)\right)<\frac{1}{p(n)} \quad \forall p$ poly., $\forall n \geq N_{p}$

Notes

- Adversary is not unable to invert f, but has low probability to do so.
- Definition works with asymptotic complexity: A sufficiently large security parameter n makes inversion infeasible.
- If f is $1-1$ then $f^{-1}(f(x))=x$.

One-Way Function
 Length Preserving One-way Functions.

Definition

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called length preserving if $\forall x \in\{0,1\}^{*}:|f(x)|=|x|$
A permutation is a length-preserving function f which is $1-1$.

Lemma (Length-preserving)

If there exists a one-way function, then we can construct a length-preserving one-way function f :

$$
\forall x \in\{0,1\}^{*}:|f(x)|=|x|
$$

Proof by reducibility arguments.

One-Way Function - In Search of Examples Factoring.

FACTORING-problem

FACTORING Instance: positive integer n
Question: \quad Find the prime factorization $n=\prod_{i} p_{i}^{e_{i}}$

Algorithms

- Number Field Sieve (1990) sub-exponential expected running time $\exp \left(1.9(\log n)^{1 / 3}(\log \log n)^{2 / 3)}\right)$
- Special-purpose algorithms, like Pollard's p-1

Candidates Based on Factoring.

A One-Way Function by Rivest, Shamir, Adleman

RSA function

RSA $_{n, e} \quad$ where $n=p q,|p|=|q|$ primes, $\operatorname{gcd}(e, \varphi(n))=1$ input: $\quad x$ positive integer output: $\quad \operatorname{RSA}_{n, e}(x):=x^{e} \bmod n$

- RSA $_{n, e}$ assumed to be one-way

Fact (FAcTORING vs. INVERTING-RSA)

If n can be factored by a PPT $\Rightarrow \quad \mathrm{RSA}_{n, e}$ can be inverted by a PPT INVERTING-RSA $\leq p$ FACTORING

Open Problem -Factoring vs. Inverting-RSA

Are FActoring and INVERTING-RSA computationally equivalent?

Candidates Based on Factoring.

The Square-Function by Rabin

Rabin's SQUARE function

SQUARE $_{n} \quad$ where $n=p q, p, q$ primes and $|p|=|q|$ input: $\quad x \in \mathbb{Z}_{n}^{*}$
output: $\quad \operatorname{SQUARE}_{n}(x):=x^{2} \bmod n$

- SQuARE $_{n}$ is not 1-1
- But SQUARE n restricted to Q_{n} is a permutation, if $n \in\{p q: p, q$ distinct odd primes, $|p|=|q|, p \equiv q \equiv 3 \bmod 4\}$ $Q_{n}:=\left\{x: x \in \mathbb{Z}_{p}^{*}, \exists y \in \mathbb{Z}: y^{2} \equiv x \bmod n\right\}$ quadratic-residues

Fact (FACTORING vs. INVERTING-SQUARE)

FACTORING(n) and INVERTING-SQUARE $_{n}$ are computationally equivalent!

One-Way Function - In Search of Examples

DLP The Discrete Logarithm Problem

DLP - discrete logarithm problem

DLP
Instance: a finite cyclic Group G of order n a generator α of G
an element $\beta \in G$
Question: Find the integer $x, 0 \leq x \leq n-1$:
$\alpha^{x}=\beta$

- Given the prime factorization $n=\prod_{i} p_{i}^{e_{i}}$ the DLP in G can be reduced to DLP's in the groups $\mathbb{Z}_{p_{i}}^{*}$

Algorithms

- Best randomized algorithms in sub-exponential running time.

Candidates Based on DLP.

EXP function

EXP $_{p, \alpha} \quad$ where p prime and α generator of \mathbb{Z}_{p}^{*} input: $\quad x \in \mathbb{Z}_{p}^{*}$
output: $\operatorname{EXP}_{p, \alpha}(x):=\alpha^{x} \bmod p$

- EXP is one-way, assuming DLP is hard

One-Way Function

Assumptions for concrete candidates:

FACTORING efficiently computable \Rightarrow RSA not one-way
FACTORING efficiently computable \Leftrightarrow SQUARING not one-way
DLP efficiently computable
$\Leftrightarrow E X P$ not one-way

Traditional assumption. hard to break in worst case

f computable by PT \Rightarrow inverse under f computable by non-det. PT:
$\hookrightarrow \mathcal{P}=\mathcal{N P} \Rightarrow$ One-Way Function not exist.
Intractability assumption. hard to break in average
We assume the adversary uses a PPT
$\hookrightarrow \mathcal{N P} \subseteq \mathcal{B P P} \Rightarrow$ One-Way Function not exist. ($\mathcal{N P} \nsubseteq \mathcal{B P P} \Rightarrow \mathcal{P} \neq \mathcal{N} \mathcal{P})$

One-Way Function

Existence of One-Way Function cannot be proved yet.

Problem

- Tradtional assumption and Intractability assumption are only necessary but not sufficient conditions.
- Existence of One-Way Functions not provable yet.
- Implementation based on reasonable 'intractability assumptions', like FACTORING, DLP.

Collection Of One-Way Functions

 Motivation
One-way function - up to now...

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$

Collection Of One-Way Functions

 Motivation
One-way function - up to now...

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ infinite domain

Collection Of One-Way Functions

 Motivation
One-way function - up to now...

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ infinite domain

- Suitable for abstract discussion

Collection Of One-Way Functions

One-way function - up to now...

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$

infinite domain

- Suitable for abstract discussion
- ..but not for natural candidates:

Collection Of One-Way Functions

Motivation

One-way function - up to now...

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$

infinite domain

- Suitable for abstract discussion
- ..but not for natural candidates:

$$
\begin{aligned}
E X P_{p, \alpha}: & \{1, \ldots, p-2\} \rightarrow\{0,1\}^{*} \\
& \text { finite domain }
\end{aligned}
$$

Collection Of One-Way Functions

A larger View: Collection

$$
f_{i}: D_{i} \rightarrow\{0,1\}^{*}
$$

Collection Of One-Way Functions

A larger View: Collection

$$
\begin{array}{r}
f_{i}: D_{i} \rightarrow\{0,1\}^{*} \\
\quad \text { finite domain }
\end{array}
$$

Collection Of One-Way Functions

A larger View: Collection

$$
\begin{gathered}
F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I} \\
\text { finite domain }
\end{gathered}
$$

Collection Of One-Way Functions

A larger View: Collection

$F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I}$
infinite set

Collection Of One-Way Functions

A larger View: Collection

$F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I}$
infinite set

- The f_{i} sharing a common Index Sampler $\mathbf{S}_{\boldsymbol{l}}$

Collection Of One-Way Functions

A larger View: Collection

$F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I}$
infinite set

- The f_{i} sharing a common Index Sampler $\mathbf{S}_{\mathbf{I}}$
- The f_{i} sharing a common Domain Sampler $\mathbf{S}_{\mathbf{D}}$

Collection Of One-Way Functions $F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I}$

Security parameter
$n \in \mathbb{N}$

Collection Of One-Way Functions
 $F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in I}$

Security parameter
$n \in \mathbb{N}$
PPT S_{I} Index sampler
$i \in I \cap\{0,1\}^{n}$

Collection Of One-Way Functions

 $F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in 1}$Security parameter
$n \in \mathbb{N}$
PPT S_{I} Index sampler

PPT S_{D} Domain sampler

Collection Of One-Way Functions

 $F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in 1}$Security parameter

PPT S_{I} Index sampler

PPT S_{D} Domain sampler
$\mathbf{P P T} A \rightarrow f_{i}(x)$

Collection Of One-Way Functions

 $F:=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}_{i \in 1}$Security parameter

Collection Of One Way Functions Definition.

Definition

Let I be a set of indices and $D_{i} \subset\{0,1\}^{*}$ finite $\forall i \in I$. A collection of one-way functions is a set

$$
F=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}
$$

satisfying the following two conditions
1 There exists tree PPT $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}, \mathbf{A}$, such that
S_{I} on input 1^{n} outputs an $i \in\{0,1\}^{n} \cap I$
\mathbf{S}_{D} on input $i \in I$ outputs an $x \in D_{i}$
A on input $i \in I$ and $x \in D_{i}$ it holds that $A(i, x)=f_{i}(x)$

Collection Of One Way Functions

Definition.

Definition

Let I be a set of indices and $D_{i} \subset\{0,1\}^{*}$ finite $\forall i \in I$. A collection of one-way functions is a set

$$
F=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}
$$

satisfying the following two conditions
1 There exists tree PPT $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}, \mathbf{A}$, such that
$S_{\text {I }}$ on input 1^{n} outputs an $i \in\{0,1\}^{n} \cap I$
\mathbf{S}_{D} on input $i \in l$ outputs an $x \in D_{i}$
A on input $i \in I$ and $x \in D_{i}$ it holds that $A(i, x)=f_{i}(x)$
2 The probability of finding an inverse for every PPT given i and an element in range is negligible, if we consider the distribution induced by $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}$.

Collection Of One Way Functions

Definition.

Definition

Let I be a set of indices and $D_{i} \subset\{0,1\}^{*}$ finite $\forall i \in I$. A collection of one-way functions is a set

$$
F=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}
$$

satisfying the following two conditions
1 There exists tree PPT $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}, \mathbf{A}$, such that
S_{I} on input 1^{n} outputs an $i \in\{0,1\}^{n} \cap \mathrm{I}$
\mathbf{S}_{D} on input $i \in l$ outputs an $x \in D_{i}$
A on input $i \in I$ and $x \in D_{i}$ it holds that $A(i, x)=f_{i}(x)$
2 The probability of finding an inverse for every PPT given i and an element in range is negligible, if we consider the distribution induced by $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}$. For every PPT \mathbf{A}^{\prime}, every polynomial $p(\cdot)$ and sufficiently large n :

$$
\mathbf{P}\left(\mathbf{A}^{\prime}\left(f_{l_{n}}\left(X_{n}\right), I_{n}\right) \in f_{l_{n}}^{-1}\left(f_{l_{n}}\left(X_{n}\right)\right)\right)<\frac{1}{p(n)}
$$

Collection Of One Way Functions
 Definition.

Definition

Let I be a set of indices and $D_{i} \subset\{0,1\}^{*}$ finite $\forall i \in I$. A collection of one-way functions is a set

$$
F=\left\{f_{i}: D_{i} \rightarrow\{0,1\}^{*}\right\}
$$

satisfying the following two conditions
1 There exists tree PPT $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}, \mathbf{A}$, such that
S_{I} on input 1^{n} outputs an $i \in\{0,1\}^{n} \cap \mathrm{I}$
\mathbf{S}_{D} on input $i \in I$ outputs an $x \in D_{i}$
A on input $i \in I$ and $x \in D_{i}$ it holds that $A(i, x)=f_{i}(x)$
2 The probability of finding an inverse for every PPT given i and an element in range is negligible, if we consider the distribution induced by $\mathbf{S}_{\mathbf{l}}, \mathbf{S}_{\mathbf{D}}$.
For every PPT \mathbf{A}^{\prime}, every polynomial $p(\cdot)$ and sufficiently large n :

$$
\mathbf{P}\left(\mathbf{A}^{\prime}\left(f_{l_{n}}\left(X_{n}\right), I_{n}\right) \in f_{l_{n}}^{-1}\left(f_{f_{n}}\left(X_{n}\right)\right)\right)<\frac{1}{p(n)}
$$

I_{n}, X_{n} random variable describing output distribution of $\mathbf{S}_{\mathbf{I}}, \mathbf{S}_{\mathbf{D}}$

Collection Of One-Way Functions

$E X P:=\left\{E X P_{p, \alpha}: \mathbb{Z}_{p-1} \rightarrow\{0,1\}^{*}\right\}$

Security parameter

Collection Of Trapdoor Functions

Security parameter

Collection Of Trapdoor Functions

Security parameter

Collection Of Trapdoor Functions

Security parameter

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

1	1	0	0	1	0

0	1	0	1	1	0

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

$$
x \longrightarrow \mathrm{EXP}_{p, \alpha}(x)
$$

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

$$
x \longrightarrow \mathrm{EXP}_{p, \alpha}(x)
$$

Hard-Core Predicate - Motivation

 Bit-Security of EXP
How secure is EXP?

- A one-way function doesn't hide partial information

Hard-Core Predicate - Motivation

Bit-Security of EXP

How secure is EXP?

as hard as inverting

- A one-way function doesn't hide partial information
- But at least one Bit of information is hard to guess

Hard-Core Predicate - Definition

Idea of hard-core predicate.

$$
x \longrightarrow f(x)
$$

Hard-Core Predicate - Definition

Idea of hard-core predicate.

$$
\begin{aligned}
& f \text { one-way } \\
& b(x) \in\{0,1\}
\end{aligned}
$$

Hard-Core Predicate - Definition

Idea of hard-core predicate.

Hard-Core Predicate - Definition

Idea of hard-core predicate.

Hard-Core Predicate

Definition.

Instance

- a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- a predicate $b:\{0,1\}^{*} \rightarrow\{0,1\}$

Definition

b is a hard-core predicate of f, iff

- \exists PPT A such that $\forall x: \mathbf{A}(x)=b(x)$

Hard-Core Predicate

Definition.

Instance

- a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- a predicate $b:\{0,1\}^{*} \rightarrow\{0,1\}$

Definition

b is a hard-core predicate of f, iff

- \exists PPT A, such that $\forall x: \mathbf{A}(x)=b(x)$
- Every efficient algorithm given $f(x)$ can guess $b(x)$ only with success probability negligible better than $\frac{1}{2}$

Hard-Core Predicate

Definition.

Instance

- a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- a predicate $b:\{0,1\}^{*} \rightarrow\{0,1\}$

Definition

b is a hard-core predicate of f, iff

- \exists PPT A, such that $\forall x: \mathbf{A}(x)=b(x)$
- \forall PPT G, $\forall p$ polynomial and sufficiently large n :

$$
\mathbf{P}\left(G\left(f\left(U_{n}\right)\right)=b\left(U_{n}\right)\right)<\frac{1}{2}+\frac{1}{p(n)}
$$

A Generic Hard-Core Predicate

A Hard-Core Predicate for 'any' One-Way Function.

Instance

- $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ length preserving
- $g(x, r):=(f(x), r)$, where $|x|=|r|$
- $b(x, r):=<x, r>_{\text {mod } 2}:=\sum_{i}\left(x_{i} r_{i} \bmod 2\right)$

Theorem

Let f be a length-preserving one-way function, and let g, b defined like above. Then b is a hard-core predicate of the function g.

Notes

It means: it is infeasible to guess the exclusive-or of a random subset of the bits of x, when given $f(x)$ and the subset itself, denoted by r.

A Generic Hard-Core Predicate - Proof Sketch.

Proof sketch.

We use a 'reducibility argument' and proof by contradiction:
1 Suppose: b is not hard-core predicate of g
Then there exists an efficient algorithm \mathbf{G}, that can guess b with non-negligible probability better $\frac{1}{2}$:
$\Rightarrow \exists$ PPT G, $\exists p$ polynomial:

$$
\varepsilon(n):=\mathbf{P}\left(\mathbf{G}\left(f\left(X_{n}, R_{n}\right)=b\left(X_{n}, R_{n}\right)\right)-\frac{1}{2}>\frac{1}{p(n)}\right.
$$

2 Construct an efficient algorithm \mathbf{A} (using \mathbf{G}), which inverts f on input $(f(x), r)$ with non-negligible probability
3 Conclude:
$\exists \mathbf{G} \Rightarrow \exists \mathbf{A} \Rightarrow f$ not one-way
\Rightarrow contradiction to f one-way.

Proof - Inverting Algorithm A

Idea I-a mental experiment

Important Observation

$b(x, \alpha) \oplus b(x, \beta)=b(x, \alpha \oplus \beta)$
$x_{i}=b(x, \alpha) \oplus b\left(x, \alpha \oplus e_{i}\right)$

Mental Experiment

Suppose: Guessing by \mathbf{G} works very good for a subset $S_{n} \subseteq\{0,1\}^{n}$:

- $\mathbf{P}(\mathbf{G}$ correct guess $)=\mathbf{P}(\mathbf{G}(f(x), r)=b(x, r))>\frac{3}{4}+\frac{1}{2 p(n)}$
- for all inputs $f(x)$ with $x \in S_{n}$
- for all sufficiently large $n \in \mathbb{N}$

Algorithm \mathbf{A} (guessing the $i^{\text {th }}$ bit of the inverse):
(1) Randomly select $r \in\{0,1\}^{n}$
(2) Compute $z_{i}:=\mathbf{G}(f(x), r) \oplus \mathbf{G}\left(f(x), r \oplus \boldsymbol{e}_{i}\right)$

Success probability: $\mathbf{P}\left(\mathbf{A}(f(x)) \in f^{-1}(f(x))\right)>\frac{1}{2}+\frac{3}{4 p(n)}$
\hookrightarrow Repetition and rule by majority \Rightarrow efficiently computes x_{i}

Proof - Inverting Algorithm A

Idea II - Use G and Make Own Guess

Notice: $b(x, \alpha) \oplus b\left(x, \alpha \oplus e_{i}\right)=x_{i} \quad \forall x, \alpha, i$

Idea to construct A inverting $f(x)$ for all $x \in S_{n}$

- Select a special subset S_{n}, where \mathbf{G} works sufficiently successful.
- Use \mathbf{G} to guess $b\left(x, r \oplus e_{i}\right)$
- Make own guess ρ for $b(x, r)$
- Both guess correct: $x_{i}=\rho \oplus \mathbf{G}\left(f(x), r \oplus \boldsymbol{e}_{i}\right)$

Claim I (S_{n}, where G guesses sufficiently good)

If b not hard-core, n sufficiently large, then there exists a subset $S_{n} \subseteq\{0,1\}^{n}$, such that

- 'Large enough': $\left|S_{n}\right| \geq \frac{\varepsilon(n)}{2} 2^{n}$
- 'Succesful enough': $\forall x \in S_{n}: \pi(x):=\mathbf{P}\left(\mathbf{G}\left(x, R_{n}\right)=b\left(x, R_{n}\right)\right) \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}$

Proof - Inverting Algorithm A

Idea II - ρ_{J} our own guess

Our guess

- Randomly select k strings $s_{1}, \ldots, s_{k} \in\{0,1\}^{n}$ and k predicates $\sigma_{1}, \ldots, \sigma_{k} \in\{0,1\}$ (by Laplace-Experiment)
- for every (non empty) index-subset $J \subseteq\{1, \ldots, k\}$:

$$
\begin{aligned}
& r_{J}:=\bigoplus_{j \in J} s_{j} \\
& \Rightarrow b\left(x, r_{J}\right)=b\left(x, \bigoplus_{j \in J} s_{j}\right)=\bigoplus_{j \in J} b\left(x, s_{j}\right) \\
& \Rightarrow \rho_{J}:=\bigoplus_{j \in J} \sigma_{j} \text { our guess of } b\left(x, r_{J}\right)
\end{aligned}
$$

- Probability that $\rho_{J}=b\left(x, r_{J}\right)$ for all subsets $J \in\{1, \ldots, k\}$ is 2^{-k}

Proof - Inverting Algorithm A

The Algorithm

Algorithm (guesses $i^{\text {th }}$ bit)

Let \mathbf{A} be the following PPT algorithm:
(1) Set $k:=\left\lceil\log _{2}\left(2 n \cdot p(n)^{2}+1\right\rceil\right.$
(2) Uniformly and Independent select $s_{1}, \ldots, s_{k} \in\{0,1\}^{n}, \sigma_{1}, \ldots, \sigma_{k} \in\{0,1\}$
(3) $\forall J \subseteq\{1, \ldots, k\}$, J non-empty compute:

- $r_{J} \leftarrow \bigoplus_{j \in J} s_{j}$
- $\rho_{J} \leftarrow \bigoplus_{j \in J} \sigma_{j}$
- $z_{J} \leftarrow \rho_{J} \oplus \mathbf{G}\left(f(x), r_{J} \oplus e_{i}\right)$
(9) Output z the majority value of the z_{J}

Proof - Inverting Algorithm A

Observing Events.

$$
\begin{array}{ll}
r_{J} \leftarrow \bigoplus_{j \in J} s_{j} & s_{j} \in\{0,1\}^{n} \text { randomly chosen } \\
\rho_{J} \leftarrow \bigoplus_{j \in J} \sigma_{j} & \sigma_{j} \in\{0,1\} \text { randomly chosen } \\
z_{J} \leftarrow \rho_{J} \oplus \mathbf{G}\left(f(x), r_{J} \oplus e_{i}\right) & \text { compare: } x_{i}=b\left(x, r_{J}\right) \oplus b\left(x, r_{J} \oplus e_{i}\right)
\end{array}
$$

Events of interest

- Event \mathcal{E} : G guessing correct for majority of subsets $J \subseteq\{1, \ldots, k\}$:

$$
\mathcal{E}:\left|\left\{J: \mathbf{G}\left(f(x), r_{J} \oplus e_{i}\right)=b\left(x, r_{J} \oplus e_{i}\right)\right\}\right|>\frac{1}{2}\left(2^{k}-1\right)
$$

- Event \mathcal{F} : our guess correct for all subsets:

$$
\mathcal{F}: \rho_{J}=b\left(x, r_{J}\right) \quad \forall J \subseteq\{1, \ldots, k\}
$$

Probabilities

- Event \mathcal{E} :
$\mathbf{P}\left(\mathcal{E} \mid x \in S_{n}\right)>\frac{1}{2}$ (this we have to prove!)
- Event \mathcal{F} :
$\mathbf{P}\left(\mathcal{F} \mid x \in S_{n}\right)=\mathbf{P}\left(\forall J: \sigma_{J}=b\left(x, s_{J}\right) \mid x \in S_{n}\right)=2^{-k}$ (Bernoulli)

Proof - Inverting Algorithm A

Success Probability

$$
\begin{array}{ll}
z_{J} \leftarrow \rho_{J} \oplus \mathbf{G}\left(f(x), r_{J} \oplus e_{i}\right) & \\
\mathbf{P}\left(\mathcal{E} \mid x \in S_{n}\right)>\frac{1}{2} & \mathcal{E}: \mathbf{G} \text { correct for the majori } \\
\mathbf{P}\left(\mathcal{F} \mid x \in S_{n}\right)=2^{-k} & \mathcal{F}: \rho_{J} \text { correct for all } J^{\prime} \mathrm{s} \\
\left|S_{n}\right|>\frac{\epsilon}{2} \cdot 2^{n} \geq \frac{1}{2 p(n)} 2^{n} & k:=\left\lceil\log _{2}\left(2 n \cdot p(n)^{2}+1\right\rceil\right.
\end{array}
$$

Success Probability of Algorithm

$\mathbf{P}\left(\mathbf{A}(f(x))\right.$ outputs $i^{\text {th }}$ bit of an inverse of $\left.f(x)\right)$
$=\mathbf{P}\left(\right.$ For majority of all J's: $\left.z_{J}=x_{i}\right)=\mathbf{P}\left(\mathcal{E} \wedge \mathcal{F} \mid x \in S_{n}\right)$
$=\mathbf{P}(\mathcal{E}) \cdot \mathbf{P}(\mathcal{F}) \cdot \mathbf{P}\left(x \in S_{n}\right) \quad$ (Independence to be proved!)
$>\frac{1}{2} \cdot 2^{-k} \cdot \frac{\left|S_{n}\right|}{2^{n}}=\frac{1}{8 m p(n)^{3}+p(n)}=\frac{1}{p o l y(n)}$ not negligible!!!
\hookrightarrow By repeating for all bits: we can efficiently compute x.
\hookrightarrow Contradiction to ' f is one-way' $\Rightarrow b$ is hard-core Predicate

Proof

Claims to be proved

Claim I: There existst S_{n}, where \mathbf{G} guesses sufficiently good

If b not hard-core, n sufficiently large, then there exists a subset $S_{n} \subseteq\{0,1\}^{n}$, such that

- 'Large enough': $\left|S_{n}\right| \geq \frac{\varepsilon(n)}{2} 2^{n}$
- 'Succesful enough': $\forall x \in S_{n}: \pi(x):=\mathbf{P}\left(\mathbf{G}\left(x, R_{n}\right)=b\left(x, R_{n}\right)\right) \geq \frac{1}{2}+\frac{\varepsilon(n)}{2}$

Claim II: $\mathbf{P}\left(\mathcal{E} \mid x \in S_{n}\right)>\frac{1}{2}$

For every $x \in S_{n}$:
$\mathbf{P}\left(\left|\left\{J: \mathbf{G}\left(f(x), r_{J} \oplus e_{i}\right)=b\left(x, r_{J} \oplus e_{i}\right)\right\}\right|>\frac{1}{2}\left(2^{k}-1\right)\right)>1-\frac{1}{2 p(n)}$

one-way functions are important primitives.

Formalizing and abstracting

The concept of one-way functions abstracts the central idea of many common cryptosystems:

- RSA
- RABIN-Square
- ElGamal

As a basis

The introduced concept is a basis for more applicable theories:

- public key cryptosystems
- pseudorandom sequences
- hash functions
- ...

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Summary

- Basic definitions of computational complexity theory
- Formalized the definition of one-way function
- Discussed necessary conditions, like 'intractability assumption'
- Introduced the concept of one-way collections and trapdoor-collection
- Defined the hard-core predicate
- Proved the existence of a generic hard-core predicate

Literature

- O.Goldreich

Foundations of cryptography 2001, available online

- S. Goldwasser, M. Bellare

Lecture notes on cryptography
2001, available online

- A. Menezes, P. van Oorschot, S. Vanstone Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

Literature

- O.Goldreich Foundations of cryptography 2001, available online
- S. Goldwasser, M. Bellare

Lecture notes on cryptography 2001, available online

- A. Menezes, P. van Oorschot, S. Vanstone Handbook of Applied Cryptography
CRC Press, 1969, www.cacr.math.uwaterloo.co/hac

Literature

- O.Goldreich

Foundations of cryptography 2001, available online

- S. Goldwasser, M. Bellare

Lecture notes on cryptography 2001, available online

- A. Menezes, P. van Oorschot, S. Vanstone Handbook of Applied Cryptography CRC Press, 1969, www.cacr.math. uwaterloo.co/hac

